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Raman Amplification for Telecom Optical Networks

Outline of the talk

- Raman interaction of Light with the glass

- Spectral and power characteristics

- Noise performance and limitations
(Rayleigh, noise transfer)

- System implementation

- Lumped Raman amplifiers
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Raman amplification : Principle

Measured gain-curve : 1 pump @ 1487 nm
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Effect happens for any pump frequency, polarization dependent
Instantaneous effect (not the travel time of the pump along the fiber !)
Peak Raman shift = - 13 THz (glass phonon energy)

Top width = 2.5 THz, can be broadened with multi-A pumping

=> Long interaction fibers

—> Confinement

==> Attenuation at the pump wavelength is paramount
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Distributed Raman Preamplification
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Fiber efficiency per unit length and per W of pump

1486-nm pumping

Ci Max

NZDSF+ 0.75
NZDSF- 0.68

TeraLight 0.57

Raman efficiency C, (W-1.km-")

SMF 0.40
PSCF 0.38
13.3-THz peak
(W'.knr")
Frequency Shift (THz)
Raman Amplification for Telecom Optical Networks PSCF : Pure Silica Core Fiber
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Fiber efficiency is pump wavelength dependent

1486-nm PUMP 1400-nm PUMP

NZDSF- +37 %
NZDSF+ +21 %

TeralLight + 46 %

PSCF + 26 %
SMF +20 %
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- Pump/signal/core overlap

Raman Amplification for Telecom Optical Networks
D. Bayart — Bell Labs France




Effect of interchannel Raman depletion
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Small-frequency-shift energy transfers
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Noise figure for Distributed Raman Preamplification

Line Fiber

WDM
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Intrinsic noise parameter = 3dB (quantum limit)

Equivalent noise figure = the noise figure of an EDFA located in B
point and providing with the Raman ON/OFF gain

Equivalent noise figures can be equal or lower than 0 dB
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Double-Rayleigh Scattering
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Pprs (L)
- Signal (neglecting the DRS term): Py (2) = P,(0).G, (0 > 2)

/L
» Simple Rayleigh-scattered signal: Prs( ) = J.yr’PS(Z)'Gnet(.y_) 2).dz

L
- Double Rayleigh-scattered signal: £zq(L) = _[O r.P (.G _(y— L).dy

= DRS noise-to-signal ratio at the end of the fibre:

Rprs =

Pors(L)/Ps(L)
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Double-Rayleigh Scattering (DRS)

 DRS is a delayed copy of the signal => beating noise at detection with the

signal by quadratic detection: 2 Av
RIM( 1) = Ry 2 2
7 (" +(Av)?)

« Exists in all transmissions but is more penalizing with distributed Raman
amplification: DRS is amplified during its double-path

« Crucial issue: DRS impairment is a limit to high amounts of Raman gain

 ASE and DRS essentially differ by their spectral distribution:
- ASE is constant with wavelength in the range of the signal bandwidth

- DRS is a replica of the signal optical spectrum
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Electrical measurement of DRS

RIN (dB/Hz)
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Signal-ASE and signal-DRS beat noises

Reference case:
NRZ, broad optical filtering

2 _ 2\ 7Sg polar
ng-ASE B 4“ NASE PSBelec

2 . sgpolar
ng—DRS - 211 P PS

General case:
any format

2 _
Osg-ASE _°PASE Pg

2 [
Osg-DR _°PDRS Pg

depend on:

- modulation format (signal pattern)
- optical and electrical filters at reception
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Conclusion on Double-Raleigh Scattering

DRS is a major limitation of the maximum Raman gain that
can be obtained in the line fiber

Limits Raman advantage in backward pumping

Max gain closed to 23 dB

For all Raman pumping of the line fiber
Need for forward pumping
v See related issues (RIN, ...)

Or use of Raman pumping into the DCF

v Increases non-linear effects in the DCF
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Pump-to-signal RIN transfer

Raman effect is very fast (femtosecond)

Locally, the intensity fluctuations of the pump are totally

transferred to the signal by gain (dB)

Effect averaged
- by counter propagation (backward pumping)

- only by chromatic dispersion for forward pumping
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Transfer functions
Assumptions:

Distributed Raman amplification: long fiber (50 -100km)
Moderate Raman gain, moderate pump RIN

No pump depletion
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for backward pumping

o

1 for forward pumping
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Reference: C. R. S. Fludger and al., Electron. Lett., 2001, 37, (1), pp. 15-17
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Transfer functions

Signal RIN with forward pumping

- SMF (f,=6 MHz)

- Teralight (f.=18 MHz)
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Raman amplification : Implementation
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Use of wavelength multiplexed Raman pumps
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Efficiency depends on fiber type and characteristics
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Stimulated Raman Scattering
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All Raman pumping schemes

DRA in the link:

31dB on-off Raman DCF
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Criteria for performance assessment (ULH)

Final impairment of the amplifier on the system:

I >
Generation of noise Cie =N Bt 5 - E.RDMEH
L
Non-linear phase Cpbase = 7/J.0 GNet(Z)dZ

Achievable distance Is proportional to (¢
— Parameter C = C,..C

-1/2
: Cpbase)

oi1s¢

the smaller the better)

noise* ~phase (

Co-pumping issues to be accounted aside
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All-Raman transmission of 6 Tbit/s over 6120 km

Tx 149x43Gbit/s —e~ ¢

Lumped : Lumped
Raman amp. JPYn. Gain P

C [ | Equalizer |\ C Raman amp.
Polarization
scrambler L\[Dyn. Gan]J L

Equalizer

™

Link fiber

\—

All Raman amplification (First+Second order)
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Experimental results with all-Raman amplification
Spectrum after 6,120km with 149 DPSK channels

C-band L-band

Power
10dB/div.

1530 1550 1570 1590
Wavelength (nm)

In C-band: more odd than even channels
Gain excursion close to 10 dB after 6120km
OSNR_0.1nm > 16.9dB in L band

OSNR _0.1nm > 14.6 dB in C band
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Lumped Raman Amplifier
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