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Mirror heating and COD in high-power lasers
(Catastrophic Optical Damage )

Jens W. Tomm and Ignacio Esquivias

Outline
1. Introduction
1.1. Failure modes of high-power diode lasers
1.2. Catastrophic (Optical) Damage (COD) and Catastrophic 

Optical Mirror Damage (COMD)
1.3. Physical origins of facet failures (COMD)
1.4. The thermal runaway model of COMD

2. Experimental
2.1. Available techniques for in-situ analysis of COMD (quick intro)
2.2. Experimental results 
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3. Modeling of facet heating 
3.1 Introduction
3.2 Electrical models
3.3 Thermal models
3.4 Facet heat sources
3.5 Some modeling results

4. Techniques to decrease facet heating
4.1 Surface passivation
4.2 Non-absorbing mirrors (NAMs)
4.3 Non-injecting mirrors (NIMs or blocking layers)

5. Conclusions

Mirror heating and COD in high-power lasers
(Catastrophic Optical Damage )
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1. Introduction

1.1.  Failure modes of high-power diode lasers

Catastrophic
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1.2.  Catastrophic Optical Damage (COD) and 
Catastrophic Optical Mirror Damage (COMD)

Liu et al. J. Appl. Phys. 100, 013104 (2006).

Substrate Substrate

Substrate

Heat sinkHeat sink

Heat sink

Ko et al. Appl. Phys. A 68, 467 (1999).

Rechenberg et al. Inst. Phys. Conf. 
Ser.160, 479 (1997).

Frigeri et al. Inst. Phys. Conf. 
Ser.160, 483 (1997).

100 nm

100 nm

500 nm

Tomm et al. Quantum Well Laser Array
Packaging McGraw-Hill, New York (2006).
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1.3.  Physical origins of facet failures (COMD)
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1.3.  Physical origins of facet failures (COMD)

Surface recombination
Velocities s1 and s2
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1.3.  Physical origins of facet failures (COMD)

Surface recombination
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1.3.  Physical origins of facet failures (COMD)



Tutorial at the BRIGHTER meeting at the  Department  of Physics
Lund University, Sweden, June 27-29, 2007 

10

1.3.  Physical origins of facet failures (COMD)

1. Translation symmetry 
gets lost

2. Surface reconstruction
takes place 
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1.3.  Physical origins of facet failures (COMD)

1. Translation symmetry 
gets lost

2. Surface reconstruction
takes place 
(modification of the 
bandstructure)

3. Dangling bonds 

4. Adosorbates, Oxide

5. Technology
- Passivation
- Protection coating 
- Dielectric (AR) coating 
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1. Substantial modification of the band structure at the surface.

Accumulation Depletion                 Inversion

Consequences:

2. Surface as additional localized recombination channel. 

s , the surface recombination velocity quantifies the efficiency of this
mechanism, not its microscopic origin.

1.3.  Physical origins of facet failures (COMD)
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Some values for s at GaAs-surfaces 

s acts as an additional heat source at the surface

K. Jarasiunas
private
information
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1.4.  The thermal runaway model of COMD

Temperature at the facet is determined by 
- surface recombination rate ~
- gradual aging (increased s1>s0) ~ 

- re-absorbed power ~ P
- current ~ I

- bulk-temperature ~ U*I - P

ns δ*0
All these 

mechanisms
make T 

increasing.

Problems:

- We do not know the weight factors 
- No means to separate them from  each other.

ns δ*1
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1.4.  The thermal runaway model of COMD
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Front facet            Reverse facet

What happens with a semiconductor (QW) if the temperature increases?

- More free carriers get generated (conductivity increases)
- Band edge shrinks (absorption increases)
- Degradation gets increased
- …
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Example: Re-absorption of laser light at the
heated facets
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COMD scenario: Thermal runaway

Chen and Tien, J. Appl. Phys. 74, 2167 (1993) Henry et al. J. Appl. Phys. 50, 3721 (1979) 

QW laser
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COMD mechanism in QW-devices

Tang et al. 
Appl. Phys. Lett. 
60, 1043 (1992)

Scenarios are based on consideration of 
intrinsic properties.

but …

Evidence for current-density-induced heating of AlGaAs 
single-quantum-well laser facets 

Tang et al. Appl. Phys. Lett. 59, 1005 (1991).
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T temperature
ISt Stokes intensity
Ia-St anti-Stokes intensity
νl frequency of excitation light

νph frequency of phonons
h  Planck´s constant
c velocity of light
k Boltzmann constant

2. Experimental
2.1.  Available techniques for in-situ analysis of COMD

2.1.1  Micro Raman Spectroscopy
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2. Line position1. Intensity ratio

Two completely independent approaches 
based on the same spectra: Example:

2.1.1  Micro Raman Spectroscopy
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µ-Raman-Spectrometer DILOR-xy

2.1.1  Micro Raman Spectroscopy
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Standard AlGaAs 
2 W single emitter

repetition rate 20 kHz
pulse width 8 µs
duty cycle 16%

bulk cw 9.6 K/A
pulsed 2.2 K/A

facet cw 32.2 K/A
pulsed 12.4 K/A

Example:

Device failure
for cw operation

red data obtained by µRaman
open symbols from wavelength shift0 1 2 3 4 5

0

20

40

60

80

100

120

facet cw

facet pulsed

bulk cw

bulk pulsed

T
 (

o C
)

I (A)

2.1.1  Micro Raman Spectroscopy
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P. W. Epperlein, G. L. Bona, and P. Roentgen, Appl. Phys. Lett. 60, pp. 680-682, 1992.

Wawer et al. phys. stat. sol. (a) 202, 1227, (2005). 

GaAs

442 nm
2.8 eV

2.1.2  Thermoreflectance
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Ochalski et al. Appl. Phys. Lett. 
89, 071104, 1-3 (2006).

Probe laser

2.1.2  Thermoreflectance
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Surface sensitive temperature test methods:
- micro-Raman
- Reflectance-methods

both are also sensitive 
- surface alterations (TR even to mirror!)
- to stresses 

Photoluminescence (Barrier)
Cathodoluminescence
Real time observation of the near-field
EL
L-I-V
Destructive Analysis 
PLM
CL
TEM, X-ray

Alternative analytical methods:
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2.2. Experimental results: 
Surface temperature measurement
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2.2. Experimental results: Surface temperature 
measurement vs. operation time

COMD-level lowers during aging …
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J. W. Tomm et. al
Appl. Phys. A 70, 377-381 (2000).

2.2. Experimental results: Direct 
monitoring of COMD
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Al-free RW-laser (w=3.5 µm) 980 nm, PCOD=7.6 MW/cm2

K. H. Park et. al Appl. Phys. Lett., 73, 2567-9 (1998).

170 mA

420 mA

525 mA

525 mA after 2 min

525 mA after COD

2.2. Experimental results: 
Direct monitoring of COMD
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2.2. Experimental results: How to lower 
facet heating?
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Device properties
7 nm In0.12Ga0.88As QW, λ=940 nm
800 nm Ga0.8Al0.2As-waveguide
200 µm wide stripes, L=2 mm, 
mounted p-side down    

F. Rinner et. al J. Appl. Phys. 93, 1354-1362, (2003).

Approach: Current blocking 
layer
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Reduction of the facet over-heating by 
a factor of 3-4.

For this type of QW device the facet 
heating <= 5 A is not caused by the 
optical load.

Approach: Current blocking layer

F. Rinner et. al J. Appl. Phys. 93, 1354-1362, (2003).
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Device properties*
3 layers of InAs/GaAs QDs or In0.2Ga0.8As QW, 
λ=1100 nm
300 nm GaAs-waveguide
50 µm wide stripes, L=1 mm, mounted p-side up

*Ch. Ribbat and R. Sellin
“High power quantum dot 
lasers” in M. Grundmann
(Ed.) 
Nano-Optoelectronics 
Concepts, Physics and 
Devices, Springer, 
Heidelberg, pp. 353-370, 
2002.

Approach: Quantum-dot lasers
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devices mounted p-side up 
pulsed operation (5 µs pulses, 28 kHz rep. rate, 14% duty cycle)

Reduction 
of the facet
overheating
by a factor 
of more than 2

J. W. Tomm et al.
SPIE Proc. 4993 (2003).

Approach: Quantum-dot lasers
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Outline (II)

3. Modeling of facet heating and COMD
3.1 Introduction
3.2 Description of facet heating models
3.3 Some modeling results

4. Techniques to decrease facet heating and COMD
4.1 Surface passivation
4.2 Non-absorbing mirrors (NAMs)
4.3 Low optical confinement structures

5. Conclusions
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3. Modeling of Facet Heating and COMD

3.1Introduction 

Goals of modeling 
• Better understanding of physical processes 
• Qualitative guidelines  to improve reliability and COMD level

• Optimum: Quantitative recommendations to optimize laser design 

and develop strategies for improving performance

Main difficulties of modeling facet heating
• Those of modeling laser diodes: 

� 3D device
� Complex optical/electrical/thermal interaction
� Spectral/ temporal issues
� Unknown and non-uniform internal parameters 

• Plus... those of facet heating: 
� Surface physics/chemistry
� Unknown basic mechanisms
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Models of Facet Heating:  options 

Temporal  / Spectral
• CW / Dynamic
• Single-frequency

Electrical Models
• Monopolar/ Bipolar 
• 3D / 2D /  1D 
• Definition of surface 
recombination

Thermal Models
• 3D / 2D/ 1D 
• Definition of bulk  and 

facet heat sources

Laser Model
• Selfconsistent or not 

SUBSTRATE

n
p

HEAT SINK

QW

n-metal

p-metal
oxide

W
y

x

z
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3.2 Description of Facet Heating Models
Electrical Models (I) 

1D (z), Longitudinal direction: [Henry 79], [Nakwaski 90], [Yoo 92], [Chen 93], [Schatz 94], 
[Menzel 98], [Romo 03] 
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2D (x-z), Longitudinal and lateral directions: [Lee 93]  
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Electrical Models (II) 

Main drawback:  Only valid for Broad Area Lasers 

2D (y-z), Long. and vertical directions: [Romero 99], Laser Simulator HAROLD 3.0 

3D (x-y-z): Not yet reported 

• Poisson equation
• Continuity equations for holes and  electrons
• QW balance for holes and electrons 
• Boundary conditions: 
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Thermal Models (I) 

κ: thermal conductivity
w (x, y, z): local heat sources  

Heat Flow Equation: ( ) ( )zyxwT ,,−=∇∇ κ
r

1D (z), Longitudinal direction: [Henry 79], [Yoo 92], [Menzel 98] 

2D (x-z), Long. and lateral directions: [Lee 93] 

2D (y-z), Long. and vertical directions: [Romero 99], Laser Simulator HAROLD 3.0 

3D (x-y-z): [Nakwaski 90], [Chen 93], [Schatz 94], [Romo 03] 

"Tricks" to consider the heat sink
Mathematical methods
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Thermal Models (II) 

Local Bulk Heat sources  

• Joule ∝ |J|2 · ρ
• SRH ∝ n
• Auger ∝ n3 (or n·p2 + p·n2)
• Free carrier absorption ∝ (n·αfcn + p·αfcp)·Nph (x, y, z)
• Excess power: uniform, needed for thermodynamical balance  

Facet Heat sources 

• Surface recombination ∝ n and s0 (or surface trap density) 
• Optical absorption ∝ Pout and Nph(x, y) 

p

n

Facet

Optical 
Absorption

p

n

Facet

Surface 
recombination
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Laser model 

Dynamic models: [Nakwaski 85&90], [Menzel 98] 

• Time dependent solution
• Direct information on Thermal run-away 

CW models: [Henry 79], [Yoo 92], [Chen 93], [Lee 93], 
[Schatz 94], [Romero 99],[Romo 03], Laser 
Simulator HAROLD 3.0 

• Thermal run-away can be inferred from 
lack of convergence of 
electrical/thermal equations

[Nakwaski 85]

Non-Selfconsistent: [Henry 79], [Nakwaski 90], [Yoo 92], [Chen 93], [Lee 93], [Schatz 94], 

• Solves only a region close to the facet 

Selfconsistent: [Menzel 98], [Romero 99],[Romo 03], Laser Simulator HAROLD 3.0 

• Solution of the complete cavity 
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3.3 Some modeling results
Temperature profiles (I) 

Temperature profile depends on 
thermal conductivity
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Auger Coefficient

Temperature profiles (II)

[Chen 93]

Along the facet (y-axis)

Typical thermal diff. length  ~ 1-3 µm
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Facet Temperature vs Power/Current (I)

[Chen 93] [Menzel 98b]GaAs/AlGaAs laser  
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Facet heating by surface recombination 
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Facet Temperature vs Power/Current (II)

[Batko 98]

Surface recombination Facet optical absorption

808 nm AlGaAs laser bar 
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Internal parameters

[Batko 98]

Surface recombination

808 nm AlGaAs laser bar 

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5
Cavity axis (µm)

T
em

pe
ra

tu
re

 (
°C

) 
 . 7 A 10 A

20 A 32 A
40 A

0

1E+18

2E+18

3E+18

4E+18

5E+18

0 1 2 3 4 5
Cavity axis (µm)

C
ar

rie
r 

de
ns

ity
 (c

m
 -3

)  
 .

7 A 10 A
20 A 32 A
40 A

-5000

-4000

-3000

-2000

-1000

0

1000

0 1 2 3 4 5
Cavity axis (µm)

M
at

er
ia

l g
ai

n 
(1

/c
m

) 
 .

7 A 10 A
20 A 32 A
40 A

CARRIER 
DEPLETION

OPTICAL 
ABSORPTION

FACET

P ↑↑↑↑



Tutorial at the BRIGHTER meeting at the  Department  of Physics
Lund University, Sweden, June 27-29, 2007 

61

Internal parameters

[Batko 98]

Facet optical absorption

808 nm AlGaAs laser bar 

20
30
40
50
60
70
80
90

100
110
120

0 1 2 3 4 5
Cavity axis (µm)

T
em

pe
ra

tu
re

 (
°C

) 
 .

7 A 10 A
20 A 32 A
40 A

0

2E+18

4E+18

6E+18

8E+18

1E+19

0 1 2 3 4 5
Cavity axis (µm)

C
ar

rie
r 

de
ns

ity
 (c

m
 -3

) 
  . 7 A 10 A

20 A 32 A
40 A

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5
Cavity axis (µm)

M
at

er
ia

l g
ai

n 
(1

/c
m

)  
. 7 A 10 A

20 A 32 A
40 A

CARRIER 
ACCUMULATION

ADDITIONAL  
HEATING by Auger 

rec. and FCA



Tutorial at the BRIGHTER meeting at the  Department  of Physics
Lund University, Sweden, June 27-29, 2007 

62

Thermal run-away by facet optical 
absorption 

[Batko 98] 808 nm AlGaAs laser bar 
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[Romero 00]

Optical Absorption 

Increase T facet 

Increase current and
carrier densities 

Increase Auger recomb.
and FCA heat sources  

Thermal run-away by facet optical 
absorption 
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Final remarks in modeling of facet heating (I) 

Question: Would it be better to simulate facet heating with 

3D/spectral/dynamic/electro/optical/thermal model 

(microscopic and multibody) ?

Maybe YES, but probably NOT
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Final remarks in modeling of facet heating (II) 

Question: Are all relevant issues included in present 

facet heating models ?

Clearly NOT
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Outline (II)

3. Modeling of facet heating and COMD
3.1 Introduction
3.2 Description of facet heating models
3.3 Some modeling results

4. Techniques to decrease facet heating and COMD
4.1 Surface passivation
4.2 Non-absorbing mirrors (NAMs)
4.3 Low optical confinement structures

5. Conclusions
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4. Techniques to decrease facet heating
and COMD

� Non-Injecting-Mirrors (NIMs), or current blocking layers

� Quantum Dot lasers

� Facet passivation 

� Non-Absorbing-Mirrors (NAMs)

� Low optical confinement structures
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4.1 Facet Passivation 

Unpassivated facet: high 
surface recombination velocity 

Oxides, adsorbates... 

p

n

AR coating Passivating
layer 

p

n

AR coating 

Passivated facet: low 
recombination velocity 

Passivation techniques: 

� E2 process [Gasser 92]: UHV cleaving + in situ a-Si (or Ge, Sb) deposition

� Sulphation, (NH 4)Sx treatment + coating

� Hydrogenation or Nitridation + coating

� Deposition of ZnSe, Si 3N4, Ga2O3 or ...

Technological receipt: patent or industrial secret !!!
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Non-Absorbing-Mirrors (II)  

[Batko 98] 808 nm AlGaAs laser bar 

Facet heat source: surface recombination
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4.3 Low optical confinement waveguides 

Large Optical Cavity Asymmetric Structures

high d/ ΓΓΓΓ designs

( )
( ) COMDcw P

R
R

WP
+
−

Γ
=

1
1d

   max,

Internal power 
density at COMD 
(W/cm2)

= COMDP

[Botez 99]

[Petrescu 02]

810 nm AlGaAs 
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5. Conclusions (I)

� Front facet heating represents an important issue for COMD and long 

term reliability

� Mechanisms:

1. Surface recombination appears as an additional heat source at 

facets. 

2. Surface recombination is the starting point of facet heating.

3. Above threshold, re-absorption of laser light increases surface 

recombination rate and facet temperature.

4. Further mechanisms, e.g. absorption at interfacial layers, 

surface currents...

� There are techniques allowing the monitoring of: 

• Facet temperatures (µRaman, Thermoreflectance)

• Evolution towards COMD
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5. Conclusions (II)

� COMD scenario: thermal runaway model

� Modeling tools can help to understand the underlying physics

� Modeling tools, validated by experimental results, can provide guidelines 

to improve devices 

� There are options to make devices more robust against COMD: 

• Current blocking layers (NIMs)

• QD-gain media

• Surface passivation

• Non-Absorbing Mirrors (window) 

• Low optical confinement designs

� There is still a lot to learn about facet heating and COMD !!!!
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