

Recent Solutions for Higher-Brightness Laser Sources

Presented by: Nicolas Michel Organisation name: Alcatel-Thales III-V Lab

Acknowledgements

- M. Krakowski
- B. Sumpf and FBH team
- R. Ostendorf and IAF team
- The Brighter team at III-V Lab
 M. Calligaro, M. Lecomte, O. Parillaud, B. Gérard, M. Carbonnelle, Y. Robert, C. Dernazaretian, M. Ruiz, F. Guérin, R. Benselka
- The Brighter team at TRT
 C. Larat, J. Nagle, N. Proust
- The Brighter teams at UPM, UCAM, UNott, LCFIO
- Plus all BRIGHTER members!
- Ph.D. thesis authored by S.C. Auzanneau
- M.T. Kelemen

What is brightness?

- Definition
- The brightness theorem

How to measure brightness?

ISO and other techniques

High-brightness Diode lasers

- The large cavity problem
- Single mode emitters
- Multi-mode emitters
- Future trends
- Conclusions

The diffraction limit

- The beam is a propagating electromagnetic field
- Near- and far-field are linked through the diffraction limit

The beam is defined by (here)

- Its optical power
- Its optical throughput

Brightness is defined by

$$B = \frac{P}{S\Omega} \quad (W.cm^{-2}.sr^{-1})$$

\square M² > 1 is defined by

- The optical throughput
- Its lower limit

$$S\Omega \ge \lambda^2 = M^2 \lambda^2$$

One common expression of brightness is

$$B = \frac{P}{M^2 \lambda^2}$$

For fiber coupling

Or into any other type of waveguide

The passive aberration-free lossless optical system

- PAFLOS
- Contains only lenses (and/or mirrors)
- Forms an image of the input beam

The brightness theorem

- Also known as "the conservation of brightness"
- PAFLOS systems keep brightness unchanged

The brightness theorem has important consequences

- For laser research
- Also for fundamental research (How to beat the theorem ?)

The conservation of brightness

One lens

This still holds in physical optics

For monochromatic beams

R.S. Kirby Photonics and Lasers Whiley Interscience 2006

□ Therefore ...

- End users
- Optics manufacturers
- System integrators

Who are limited by the brightness theorem ...

Ask for more input brightness ...

From laser engineers and laser researchers ... and join for common research projects

Definition

Gaussian through any transverse cut

Beam quality

- Gaussian beams are diffraction-limited
- M² = 1

How to measure the near-field at waist

- Install the laser and camera
- Install the lens
- Move the lens and focus on beam waist
- Know the magnification factor

magnification factor

What does the near-field equipement look like?

Setup at III-V Lab

moveable stage

How to measure the far-field

- Very simple
- Rotate a detector around the beam
- Setup at III-V Lab

arm length must be much longer than

rotating photodiode

diode laser

Brightness involves three parameters

- Power
- Wavelength
- M²

$$B = \frac{P}{M^2 \lambda^2} \quad (W.cm^{-2}.sr^{-1})$$

□ How to measure M²?

Two popular techniques presented

□ First option: M² at 1/e²

- Fast and easy
- Does not comply with International Standards Organization (ISO)
- Doe not take all the beam profile into account

Example with the Gaussian beam

- Assume perfect beam at 975 nm
- Simulate near-field at waist
- Simulate far-field

apply formula

$$M_{1/e^2}^2 = \frac{\pi}{4\lambda} W_{1/e^2} \Theta_{1/e^2} = 1.0$$

III-V lab

ALCATEL-THALES

Example with real beam

- Measure actual laser at 975 nm
- Measure near-field at waist
- Measure far-field

apply formula

$$M_{1/e^2}^2 = \frac{\pi}{4\lambda} W_{1/e^2} \Theta_{1/e^2} = 1.3 \pm 0.2$$

□ Second option: use M² according to ISO 11146

- International Standard
- Based on the hyperbolic curve

for Gaussian beams

Beruka How to define the hyperbolic curve of real beams?

- Shape changes with diffraction
- Use standard deviation

$$W(z) = W_0 \sqrt{1 + \left(\frac{\lambda z}{\pi W_0^2}\right)^2}$$

real beams

Calculation of the second moment of real beams

- Integrate
- Use correct integration window
- Use low noise acquisition system (SNR>100)
- Normalise each curve for unit area and zero average <x>

ALCATEL-THALES

Integration window

- ISO 11146 recommends to use 3 times the beam width (BW) as integration window
- rule of thumb is BW = 4σ true for Gaussian beams
- so that 3 x BW = 12σ

The Siegman hyperbola

- $\sigma(z)$ evolves as an hyperbola along the propagation (z) axis
- This is proved by A.E. Siegman (from Maxwell equations)
- See Procs. SPIE Vol. 1224, pp. 11-14 (1990)

True for any diode laser beam

The ISO 11146 technique is time consuming!

Unless an automated setup is available

automated z-stage from Dataray Inc. and Melles Griot

	1.20	M^2_v 1.1			
Wo_u	36.8 um	2Wo_v 35.1 um			
Lo_u	23529.4 um	Zo_v 23682.1 um			
6 <u>_</u> u	1496.5 um	Zr_v 1436.8 um			
Ineta_u	0.0 deg.	Theta_v	0.0	0.0 deg.	
NA_u	0.014	NA_v 0.01			
Las X25car I	Set Stert Position S	et End Position	Home Stage	STOP	
	>				

ISO 1146 M² extraction

High-brightness tutorial

Now let us talk about high-brightness diode lasers!

fast

ALCATEL-THALES

Common to high-power photonics

- Obtain large-section single mode waveguides
- Obtain long waveguides with low losses
- Appears in:
- diode lasers
- fiber lasers
- solid-state lasers
- large mode area optical fibers
- large mode area dielectric waveguides

□ Solu

What is COD?

- The facet of the laser is destroyed at high power
- This depends on the material structure and output width of the laser

Improving the optical design

- 1998 Large Optical Cavity (LOC)
- 2005 Super Large Optical Cavity (SLOC)
- 2008 High d/Γ asymmetric structures

Reduced fast-axis far-field

- Less than 20° FWHM
- FBH record less than 10° FWHM

Measured fast-axis far-field (III-V Lab design)

Higher COD values

- 100 µm output width
- FBH more than 15 W CW
- Intense Photonics record 25 W CW

The tapered laser

- Large oputput facet width
- Ridge allows for spatial filtering
- Ridge may include Distributed Bragg reflector (DBR) for narrow spectrum
- Increasing use of large spot size structures
- Increasing cavity length allowed by low losses material

Team	Year	Structure	λ	L _{RW}	L_{DBR}	L_{taper}	θ_{taper}	Р	M^2	Brightness
			(nm)	(mm)	(mm)	(mm)	(°)	(W)	(no unit)	(MW.cm ⁻¹ .sr ⁻¹)
FBH	2009	LOC	650	0.2		1.8	4	0.7	1.3	127
	2008	SLOC	1060	1	1	4	6	10.0	1.3	685
IAF	2009		1060					9.5	2.0	423
	2005	LOC	975	0.5		3	6	8.0	1.4	601
QPC	2007		1500					1.5		

Astigmatism

- Tapered lasers show astigmatic beams
- Waist location is different in both axes
- Astigmatic beams are more complex for single-mode fiber coupling

Example of tapered beam with imperfections

- 975 nm tapered laser
- L_{RW} = 0.5 mm

Example of tapered beam with imperfections

- 975 nm tapered laser
- L_{RW} = 0.5 mm
- L_{taper} = 3 mm

WWW• * * BRIGHTER • EU

Beam properties of tapered lasers

\square M² at 1/e² and M² σ

- 975 nm tapered laser
- L_{RW} = 0.5 mm
- L_{taper} = 3 mm
- $\theta_{taper} = 6^{\circ}$
- 4W CW

Single mode fiber coupling (SMF)

- State-of-the-art fiber coupled power is around 2 W
- Coupled power has progressed slower than emitter brightness

Fig. 22. L-I curves of the laser chip (straight line) and power coupled into SMF (squares), along with coupling efficiency (filled circles).

What is brightness

- M² relates the optical throughput or etendue to that of diffraction-limited beam
- M² at 1/e² and M²σ techniques were presented and compared

The brightness theorem

- Higher coupled brightness requires higher input brightness
- Source of significant laser research

Laser source engineering

- Is mainly based on the large cavity challenge
- Requires thicker epitaxy
- Longer waveguides are possible based on low-loss materials

State-of-the-art tapered lasers

- Tapered lasers deliver 10 W with M² of less than 2 near λ = 1 µm
- Beam limitations include astigmatism and relatively large FF angles
- Single mode fiber (SMF) coupled power is lower, in the range of 2W

Future trends ...

High spectral brightness lasers are required for

- Frequency doubling
- Atom cooling
- Solid-state pumping on narrow absorption lines

1060 nm DBR tapered laser

- Realised at Ferdinand Braun Institut (FBH)
- Also developed by US teams
- Also show improved beam quality

Courtesy FBH B. Sumpf, K.H. Hasler

ALCATEL-THALES

New broad-area laser structures

- 25 W CW from 100 µm broad area laser (Intense Photonics)
- Requires high d/Γ
- Offer higher WP efficiency of up to 76% (nLight)
- May be include gratings for less than 1 nm spectral width (Alfalight)
- Offer narrow slow-axis far-field, down to 6° FW @95% (Jenoptik)

