Toxicology and Safety

MBE maintenance: safety management

Johann Peter Reithmaier

Outline

- III-V semiconductor materials
- Molecular beam epitaxy
- Hazardeous effects of P, As and their compounds
- Arsenide treatment during MBE maitenance
- Phosphorous handling and recovery for MBE systems
- Summary

Semiconductor Materials used in MBEs: Overview

 Group III and V elements used for epitaxy on GaAs and InP substrates.

- Major doping materials:Be, C, Si
- II-VI epitaxy
 (Zn, Cd, Hg, S, Se, Te)
 on ZnSe
- Group IV epitaxy(Si, Ge)

Principle of III-V Molecular Beam Epitaxy

- Epitaxy on heated substrates
- Source materials evaporated in effusion cells:
 - → elemental Ga, In, Al, P, As, Sb
- Process in ultra-high vacuum
- Flux control by mechanical shutters
- Some advantages in material handling in comparison to MOCVD
 - → solid materials, less toxic
 - → low material consumption
- Disadvantage: Refilling and periodic maintenance necessary.

Molecular Beam Epitaxy: General Safety Concerns

- Usage of As and P
- White phosphorous pyrophoric and toxic
- Possible oxidation formation of toxic oxides
- Formation of hydrides (AsH₃ and PH₃) is also likely
- No severe safety issue during operation (some exception for P)
 - → Phosphorous cold traps
- Major safety concerns during maintenance (system opening)
 - → Personal protection
 - → Air contamination control
 - → Environment protection

Atomic and Molecular Phosphorous P, P₂, P₄

white (crystaline) phosphorous is highly toxic (formed by P₄).

→ it disturbs severely the metabolism, especially the synthesis of proteins and hydrocarbons

- → white phosphorous is known to cause mutation of bones
- white phosphorous burns easily on air
- white phosphorous builts phosphoric acid (liquid) in humid environment.

Data partially from German Federal Institute for Occupational Safety and Health

J.P. Reithmaier, foil 6

Phosphorous Hydride (Phosphine) PH₃

- gaseous, resorbed through lungs
- medium concentrations cause headaches and drop of blood pressure plus cardiac arrhythmia
- high concentrations can cause cardiac defects and respiratory paralysis
- death usually occurs due to pulmonary edema (lungs malfunction)
- long exposure to low concentrations leads to dizziness, sickness, headache and icterus
- survivors retain damage of kidney and liver

IDLH – immediately dangerous to life and health (PH_3 : IDLH = 50 ppm)

Data from German Federal Institute for Occupational Safety and Health

J.P. Reithmaier, foil 7

Arsenic (As)

- yellow As is highly toxic, but not a stable configuration
- due to its low solubility in water, elemental As is hardly resorbed
- intoxications are caused by arsenic ionic reaction products, mainly oxides - it heavily disturbs the digestive tract, the balance of electrolytes and the balance of water, leading to damage of organs, especially the kidneys
- chronic exposure damages the skin, diabetes and heart disease may also occur
- arsenic reaction products are genotoxic and have been proven to cause cancer

Data from German Federal Institute for Occupational Safety and Health

Arsenic Hydride (Arsine) AsH₃

- gaseous, resorbed through lungs
- causes hemolysis and kidney damage
- sickness appears within the first 24 hours of exposure
- heart, liver and spleen are also damaged
- death usually occurs due to heart failure
- survivors retain damage of their nerve system

 $(AsH_3: IDLH = 3 ppm)$

Data from German Federal Institute for Occupational Safety and Health

Summary of the Occupational Exposure Limits (OEL)

	Р	PH ₃	P ₂ O ₅	As	AsH ₃	As/AsO _x
MAK / TWA	0.1 ppm	0.1 ppm			0.05 ppm	
	0.05 mg/m ³		1 mg/m ³	0.01 mg/m ³		0.01 mg/m ³

TWA – time weighted average

MAK – Max. Arbeitsplatz-Konzentration

OEL – occupational exposure limits

TWA – the average concentration under which most people can work consistently 8 h without harmful effects (*ppm* – gases, vapours; *mg/m³* – solids, particles)

Data from EC and the International Programme on Chemical Safety

Molecular Beam Epitaxy: Modifications of Phosphorous

- amorphous
- stable in air
- burns at high temperature
- evaporates as P₄

- White Phosphorous:
 - P₄ molecule
 - unstable in air (self inflammable)
 - high vapor pressure

Molecular Beam Epitaxy: Solid Source Phosphorous Cell

Three zone cracker cell

- Cracking efficiency < 100%
- P_{white} condenses on LN2 shroud
- P_{white} must be removed from system regularely

Operation Procedure

Pressure inside MBE reactor during phosphorous recovery

Mass spectrometric residual gas analysis inside MBE reactor during phosphorous recovery

Neutralization of P_{white}

$$P_4 + 5 H_2O_2 + 12 NH_4OH \rightarrow 4 [PO_4(NH_4)_3] + 6 H_2O + 5 H_2$$

After neutralization the end product can be safely handled

Molecular Beam Epitaxy: System maintenance

- Presence of As and P, as well as of their hydrides and oxides, must be considered
- Use of decontamination chemicals, which do not create toxic compounds of As and P
- Air sampling recommended
- Personal protection equipment
 - carrying of gas masks
 - using acid resistent gloves
 - be aware that also residual phosphorous can burn
 - → for small openings fire might be stopped by immediate system closing
 - → fire extinguisher recommended
- Training of the staff performing maintenance and handling of the MBE equipment

Summary

- Solid state molecular beam epitaxy is in comparison to other epitaxial equipment relatively safe. No danger at all during operation.
- However, one has to be careful during system maintenance
 - → major concern is related on As and P treatment
 - → most dangerous are related hydrides and oxides.
- Special treatment necessary with white phospourous
 - → pyrolitic white phosphorous, acid formation, inflamable
 - → safe phosphourous recovery process presented developed by IAF
- Safety recommendations for system maintenance:
 - → Special training of staff needed
 - → Individual protection equipment needed
 - → Hydride sensoring recommended

Acknowledgement

Dr. Cyril Popov, Dirk Albert,
 INA, University of Kassel

ıra

Dr. Rolf Aidam, IAF Freiburg

Fraunhofer Institut
Angewandte
Festkörperphysik

Thank you for your attention